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Dirac Quantum Field Theory in Rindler Spacetime

Zhu Jianyang1 and Luo Zhijian1
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The dynamical properties of Dirac particles in Rindler spacetime are investigated.
It is shown that the vacuum state of the Dirac field in Minkowski spacetime
appears to be a thermal state for a Rindler observer, and the usual thermal
equilibrium state of the Dirac field in Minkowski spacetime is a quasithermal
equilibrium state, which is time independent and characterized by two quasi-
temperature parameters for a Rindler observer.

1. INTRODUCTION

When considering the Klein±Gordon scalar field, a vacuum state in
Minkowski spacetime appears to be a thermal state for a uniformly accelerated

Rindler observer, and the temperature is proportional to the Rindle observer’ s

proper acceleration (Sciama, 1981; Gibbons and Perry, 1978)Ð the Rindler

effect. Unruh gave a simple proof (Unruh, 1976; Birrell and Davis, 1982).

Recently, further study showed that, for the Klein±Gordon scalar field, the

usual thermal equilibrium state in Minkowski spacetime is no longer the
usual thermal equilibrium state for a uniformly accelerated Rindler observer,

but is a quasithermal equilibrium state which is time independent and charac-

terized by two quasi-temperature parameters (Zhao et al., 1996). This makes

the Rindler effect more complete.

All of the previous work has been done only on the Klein±Gordon
scalar field. The study needs to be extended to the Dirac spinor field. In this

paper, we will discuss the vacuum state and the thermal equilibrium state of

the Dirac field in Minkowski spacetime. By means of second quantization

and Bogoliubov transformation on the Dirac spinor field in Rindler spacetime,

we get the respective result.

1 Department of Physics, Jiangxi Normal University, Nanchang 330027, China.

575

0020-7748/99/0200-057 5$16.00/0 q 1999 Plenum Publishing Corporation



576 Zhu and Luo

In Section 2, we study the vacuum state of the Dirac field in Minkowski

spacetime and show that this state appears to be a thermal state and radiates

a Dirac thermal spectrum for a Rindler observer. In Section 3, we study the
usual thermal equilibrium state of the Dirac field in Minkowski spacetime

and show this state is a quasithermal equilibrium state which is time indepen-

dent and which is characterized by two quasi-temperature parameters, for the

Rindler observer. Section 4 contains a conclusion and discussion.

2. VACUUM STATE IN MINKOWSKI SPACETIME

The line element of two-dimensional Minkowski spacetime is

ds2 5 dt2 2 dx2 (1)

Under the coordinate transformation

H t 5 a 2 1 e a j sha h
x 5 a 2 1 e a j cha h (2)

(1) is represented as

ds2 5 e2a j (d h 2 2 d j 2) (3)

The system ( h , j ) is known as the Rindler coordinate system (Rindler,

1966), and the new spacetime (3) is called Rindler spacetime. Rindler coordi-

natization of Minkowski space and a conformal diagram of the Rindler system
are shown in Figs. 1 and 2. Obviously, the Rindler coordinate system covers

only a quadrant of Minkowski space, i.e., the region R. Here L is the mirror

region of R, the null rays t 1 x 5 0 and t 2 x 5 0 are event horizons of

regions R and L, the line h 5 const taken across both R and L is the Cauchy

Fig. 1. Rindler coordinatization of Minkowski space.
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Fig. 2. Conformal diagram of the Rindler system.

surface for the whole spacetime, and F and P are causal future and past
regions of R ø L, respectively. In addition, the timelike world lines of Rindler

observers ( j 5 const) are hyperbolas in the t±x plane (x 2 2 t 2 5 a 2 2e2a j 5
constant . 0). This means that the Rindler observer has a uniform

acceleration.

In flat spacetime, the dynamical behavior of Dirac particles can be

described by the Dirac equation

ira C , a 2 m C 5 0 (4)

where r a are Dirac matrices, which satisfy the following anticommutation

relations:

{r a , r b } 5 2 h a b (5)

In an inertial system of Minkowski spacetime, a complete set of mode

solutions of the Dirac equation is given as (Lurie, 1968)

1

! V0

uks exp[i (k ? x 2 v kt)] (positive-frequency modes) (6)

and

1

! V0

vks exp[ 2 i (k ? x 2 v kt)] (negative-frequency modes) (7)

where
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uks 5 ! v k 1 m

2 v k 1
Xs

s ? k

v k 1 m
Xs 2

vks 5 ! v k 1 m

2 v k 1 s ? k

v k 1 m
Xs

Xs 2
X+ 5 1 1

0 2 , X 2 5 1 0

1 2 (8)

s 5 1, 2, correspond to X+, X 2 , respectively, k is the wave vector, and v k is

the energy (we use units which " 5 c 5 G 5 1).

Therefore, we can expand the field C as

C (x, t) 5
1

! V0
o
k,s

(aksuks exp(ikx 2 i v kt)

1 c 1
ks vks exp( 2 ikx 1 i v kt)) (9)

where aks, cks, a 1
ks, c 1

ks are annihilation and creation operators of Dirac parti-

cles in Minkowski spacetime, and satisfy the following anticomutation

relations:

{aks, a 1
k8s8} 5 d kk8 d ss8

{cks, c 1
k8s8} 5 d kk8 d ss8

{aks, ak8s8} 5 {cks, ck8s8} 5 0

{a 1
ks, a 1

k8s8} 5 {c 1
ks, c 1

k8s8} 5 0

{aks, ck8s8} 5 {aks, c 1
k8s8} 5 0

{cks, ak8s8} 5 {cks, a 1
k8s8} 5 0 (10)

We define the Fock vacuum

aks | 0 & M 5 cks | 0 & M 5 0 " k, s (11)

| 0 & M is called the Minkowski vacuum.

In Rindler spacetime regions R and L, the positive- and negative-

frequency mode solutions are given as
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5
R w ks 5 5

1

! V0

ukse
ik j 2 i v h in R

0 in L

R f ks 5 5
1

! V0

vkse
2 ik j 1 i v h in R

0 in L

(12)

5
L w ks 5 5

1

! V0

ukse
ik j 1 i v h in L

0 in R

L f ks 5 5
1

! V0

vkse
2 ik j 2 i v h in L

0 in R

(13)

The set (12) is complete in the Rindler region R, while (13) is complete in

L, but neither set separately is complete on all of Minkowski space. However,

both sets together are complete in Minkowski space. The Dirac field may

be expanded in R w ks,
R f ks,

L w ks,
L f ks:

C ( j , h ) 5 o
k,s

((b (1)L
ks w ks 1 d (1) 1 L

ks f ks) 1 (b (2)R
ks w ks 1 d (2) 1 R

ks f ks)) (14)

where b (1,2)
ks , d (1,2)

ks , b (1,2) 1
ks , and d (1,2) 1

ks are annihilation and creation operators

of Dirac particles in Rindler spacetime; they satisfy the anticommutation

relations. Define the Fock vacuum

b (1,2)
ks ) 0 & R 5 d (1,2)

ks ) 0 & R 5 0 " k,s (15)

) 0 & R is called the Rindler vacuum.

The functions R w ks and R f ks do not go over smoothly to L w ks and L f ks,

respectively, at u 5 t 2 x 5 0, v 5 t 1 x 5 0 (the crossover point between
L and R); hence the Rindler modes, by virtue of their nonanalyticity at u 5
v 5 0, cannot be a combination of pure positive- or negative-frequency

Minkowski modes. They must be a mixture of positive and negative frequen-

cies, i.e., | 0 & M Þ | 0 & R.
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Imitating Unruh’ s proof about the Rindler effect, we construct the Unruh

mode function. Consider a massless spinor field; we define the Eddington±

Finkelstein coordinates

H v 5 h 1 j
u 5 h 2 j

(16)

In R, we have

H v 5 t 1 x 5 a 2 1e av

u 5 t 2 x 5 2 a 2 1e 2 au (17)

or

5 v 5
1

a
ln(av)

u 5 2
1

a
ln( 2 au)

(18)

In L, we have

H v 5 2 a 2 1e av

u 5 a 2 1e 2 au (19)

or

5 v 5
1

a
ln( 2 av)

u 5 2
1

a
ln(au)

(20)

Substituting (18) and (20) into (12) and (13), we obtain

R w ks 5
1

! V0

ukse
i( v /a)ln( 2 au) (21)

L w *2 ks 5
1

! V0

u*2 kse
2 i v u 5

1

! V0

u*2 kse
i( v /a)ln(au)

5
1

! V0

u*2 kse
i( v /a)[ln( 2 au ) 1 ln( 2 1)]

5
1

! V0

u*2 kse
i( v /a)ln( 2 au )e p v /a (22)

e 2 p v /a L w *2 ks 5
1

! V0

u*2 kse
i( v /a)ln( 2 au ) (23)
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We can see that R w ks and e 2 p v /a L w *2 ks have the same functional form. Similarly,
R f ks and e 2 p v /a L f *2 ks,

L w ks and e 2 p v /a R w *2 ks, and L f ks and e 2 p v /a R f *2 ks also

have the same functional form, so the Unruh mode functions can be con-
structed as

H f (1)
ks 5 e p v /2a R w ks 1 e 2 p v /2a L w *2 ks

g (1)
ks 5 e p v /2a R f ks 1 e 2 p v /2a L f *2 ks

(24)

H f (2)
ks 5 e p v /2a L w ks 1 e 2 p v /2a R w *2 ks

g (2)
ks 5 e p v /2a L f ks 1 e 2 p v /2a R f *2 ks

(25)

f (1,2)
ks and g (1,2)

ks share the analyticity properties of Minkowski positive- and

negative-frequency modes, and must also share a common vacuum state ) 0 & M;

thus we can expand C in terms of f (1,2)
ks and g (1,2)

ks :

C ( j , h ) 5 o
k,s

[2ch( p v /a)] 2 1/2 (B (1)
ks f (1)

ks 1 D (1) 1
ks g (1)

ks 1 B (2)
ks f (2)

ks

1 D (2) 1
ks g (2)

ks ) (26)

where B (1,2)
ks , D (1,2)

ks , B (1,2) 1
ks , and D (1,2) 1

ks are annihilation and creation operators

of Dirac particles in Minkowski spacetime when we adopt Rindler coordi-

nates. They satisfy the anticommutation relations, and the annihilation opera-

tors satisfy

B (1,2)
ks ) 0 & M 5 D (1,2)

ks | 0 & M 5 0 " k, s (27)

Equations (24) and (25) are not normalized; in (26) we introduce the normal-

ization constant. The inner product on the Dirac field in Minkowski spacetime

is defined as

( c , f ) 5 # c + f d 3x (28)

In two-dimensional Rindler spacetime, (28) can be written as

( c , f ) 5 # c + f d j (29)

From (29), we have

(R w ks,
R w k8s8) 5 (R f ks,

R f k8s8) 5 (L w ks,
L w k8s8) 5 (L f ks,

L f k8s8) 5 d kk8 d ss8

(R w *ks,
R w *k8s8) 5 (R f *ks,

R f *k8s8) 5 (L w *ks,
L w *k8s8) 5 (L f *ks,

L f *k8s8) 5 d kk8 d ss8

(R w ks,
R f *k8s8) 5 (R f ks,

R w *k8s8) 5 (L w ks,
L f *k8s8) 5 (L f ks,

L w *k8s8) 5 d kk8 d ss8

(R w ks,
R w *k8s8) 5 (R f ks,

R f *k8s8) 5 (L w ks,
L w *k8s8) 5 (L f ks,

L f *k8s8) 5 0
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(R w ks,
R f k8s8) 5 (R f *ks,

R w *k8s8) 5 (L w ks,
L f k8s8) 5 (L f *ks,

L w *k8s8) 5 0 (30)

By taking the inner products ( C , L w ks), ( C , R w ks), ( C , L f ks), ( C , R f ks),

first with C given by (14), and then by (26), we obtain the Bogoliubov

transformations

5
b (1)

ks 5 [2ch( p v /a)] 2 1/2 [e p v /2a B (2)
ks 1 e 2 p v /2a D (1) 1

2 ks ]

b (2)
ks 5 [2ch( p v /a)] 2 1/2 [e p v /2a B (1)

ks 1 e 2 p v /2a D (2) 1
2 ks ]

d (1)
ks 5 [2ch( p v /a)] 2 1/2 [e p v /2a D (2)

ks 1 e 2 p v /2a B (1) 1
2 ks ]

d (2)
ks 5 [2ch( p v /a)] 2 1/2 [e p v /2a D (1)

ks 1 e 2 p v /2a B (2) 1
2 ks ]

(31)

By means of (31) we have

H M ^ 0 ) b (1,2) 1
ks b (1,2)

ks ) 0 & M 5 (e 2 p v /a 1 1) 2 1

M ^ 0 ) d (1,2) 1
ks d (1,2)

ks ) 0 & M 5 (e 2 p v /a 1 1) 2 1 (32)

If we define temperature T0 5 a /2 p KB , (32) is represented as

H M ^ 0 ) b (1,2) 1
ks b (1,2)

ks ) 0 & M 5 (e v /KBT0 1 1) 2 1

M ^ 0 ) d (1,2) 1
ks d (1,2)

ks ) 0 & M 5 (e v /KBT0 1 1) 2 1 (33)

This is precisely the Dirac thermal spectrum for radiation, where T0 is the
coordinate temperature, a is the coordinate acceleration of the Rindler

observer, and KB is Boltzmann’ s constant.

We can see that the vacuum state of the Dirac field in Minkowski

spacetime appears to be a thermal state and radiates a Dirac thermal spectrum

for a Rindler observer.

3. THERMAL EQUILIBRIUM STATE IN MINKOWSKI
SPACETIME

Now, we further study what a uniformly accelerated observer in the

Rindler regions R and L will see when there exists a thermal equilibrium

state of the Dirac field in Minkowski spacetime. The state function | C & M and

Hamiltonian H are

) C & M 5 ) n (1)
1s n (1)

2s . . . , n (2)
1s n (2)

2s . . . , m (1)
1s m (1)

2s . . . , m (2)
1s m (2)

2s . . . & M

5 &
k,s

(B (1) 1
ks )n(1)

ks (B (1) 1
ks )n(2)

ks (D (1) 1
ks )m(1)

ks (D (2) 1
ks )m(1)

ks ) 0 & M (34)

H 5 o
k,s

v k[(B
(1) 1
ks B (1)

ks 1 D (1) 1
ks D (1)

ks ) 1 (B (2) 1
ks B (2)

ks 1 D (2) 1
ks D (2)

ks )] (35)

The Hamiltonian H is obtained from
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H 5 i # C + - 0 C dx3 (36)

As we use two-dimensional Rindler coordinates, we can write (36) as

H 5 i # C + - h C d j (37)

Note that L is the mirror region of R. The Killing vector in R is 1 - h , but
in L it is 2 - h , so in R, EK 5 " v k 5 v k 5 ) k ) , and in L, EK 5 v k 5 2 ) k ) .
In (32) we define v k 5 ) k ) .

Taking the thermal equilibrium state as a canonical ensemble, we can

give the density operator as

r Ã5 e (F 2 H)/KBT 5 e b (F 2 H), b 5 1/KBT (38)

where F is the Helmholtz free energy, and H is the system Hamiltonian. From

tr r Ã5 1 (39)

we have

e 2 b F 5 tr e 2 b H (40)

By mean of (31), (34), and (35), we obtain

^ b (1,2) 1
ks b (1,2)

ks & M, b 5 tr( r Ãb (1,2) 1
ks b (1,2)

ks )

5 tr(e 2 b Hb (1,2) 1
ks b (1,2)

ks )/tr(e 2 b H)

5 (e b v k 1 e 2 p v k/a)/(e b v k 1 1)(e 2 p v k/a 1 1)

^ d (1,2) 1
ks d (1,2)

ks & M, b 5 tr( r Ãd (1,2) 1
ks d (1,2)

ks )

5 tr(e 2 b Hd (1,2) 1
ks d (1,2)

ks )/tr(e 2 b H)

5 (e b v k 1 e 2 p v k/a)/(e b v k 1 1)(e 2 p v k/a 1 1) (41)

The usual thermal equilibrium state of the Dirac field in Minkowski spacetime

is a quasithermal equilibrium state which is time independent and character-

ized by two quasi-temperature parameters for a Rindler observer.

Equation (41) goes over to the ordinary Minkowski thermal equilibrium

state when the acceleration a of the Rindler observer tends to zero,

H ^ b (1,2) 1
ks b (1,2)

ks & M, b ® (e b v k 1 1) 2 1

^ d (1,2) 1
ks d (1,2)

ks & M, b ® (e b v k 1 1) 2 1 (42)

On the other hand, when the temperature of the thermal state in the

Minkowski spacetime goes to zero, the Rindler observer will see an ordinary

Rindler effect,
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H ^ b (1,2) 1
ks b (1,2)

ks & M , b ® (e 2 p v /a 1 1) 2 1

^ d (1,2) 1
ks d (1,2)

ks & M, b ® (e 2 p v /a 1 1) 2 1 (43)

This is (32).

4. CONCLUSION AND DISCUSSION

The vacuum state of the Dirac field in Minkowski spacetime appears

to be a thermal state and radiates a Dirac thermal spectrum for a Rindler

observer. The usual thermal equilibrium state of the Dirac field in Minkowski

spacetime is a quasithermal equilibrium state, which is time independent and

characterized by two quasi-temperature parameters for a Rindler observer.
We have extended the Rindler effect to the Dirac spinor field. By means

of second quantization and the Bogoliubov transformation on the Dirac spinor

field in Rindler spacetime, we obtain a similar result to the Klein±Gordon

scalar field. This is what we expect. But it is noteworthy that the Dirac field

is much more complex than the Klein±Gordon field; the Dirac equation

possesses not only positive-, but also negative-frequency mode solutions, so
the quantization of the Dirac field is different from the Klein±Gordon field,

and the study of the Rindler effect is more complicated.

REFERENCES

Birrell, N. D., and Davis, P. C. W. (1982). Quantum Fields in Curved Space. Cambridge

University Press, Cambridge.

Gibbons, G. W., and Perry, M. J. (1978). Proc. R. Soc. Lond. A, 358, 467.

Lurie, D. (1986). Particles and Field, Wiley, New York.

Rindler, W. (1966). Am. J. Phys. 34, 1174.

Sciama, D. W. (1981). Adv. Phys. 30, 327.

Unruh, W. G. (1976). Phys. Rev. D, 14, 870.

Zhao Zheng, Zhu Jian-yang, and Misra, B. (1996). Int. J. Theor. Phys. 35, 741.


